200 research outputs found

    The polycomb group protein EZH2 is involved in progression of prostate cancer

    Full text link
    Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling(1), that the polycomb group protein enhancer of zeste homolog 2 (EZH2)(2,3) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes(4) targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62896/1/nature01075.pd

    GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics

    Get PDF
    GOLPH2 is coding the 73-kDa type II Golgi membrane antigen GOLPH2/GP73. Upregulation of GOLPH2 mRNA has been recently reported in expression array analyses of prostate cancer. As GOLPH2 protein expression in prostate tissues is currently unknown, this study aimed at a comprehensive analysis of GOLPH2 protein in benign and malignant prostate lesions. Immunohistochemically detected GOLPH2 protein expression was compared with the basal cell marker p63 and the prostate cancer marker Ξ±-methylacyl-CoA racemase (AMACR) in 614 radical prostatectomy specimens. GOLPH2 exhibited a perinuclear Golgi-type staining pattern and was preferentially seen in prostatic gland epithelia. Using a semiquantitative staining intensity score, GOLPH2 expression was significantly higher in prostate cancer glands compared with normal glands (P<0.001). GOLPH2 protein was upregulated in 567 of 614 tumours (92.3%) and AMACR in 583 of 614 tumours (95%) (correlation coefficient 0.113, P=0.005). Importantly, GOLPH2 immunohistochemistry exhibited a lower level of intratumoral heterogeneity (25 vs 45%). Further, GOLPH2 upregulation was detected in 26 of 31 (84%) AMACR-negative prostate cancer cases. These data clearly suggest GOLPH2 as an additional ancillary positive marker for tissue-based diagnosis of prostate cancer

    GOLPH2 expression may serve as diagnostic marker in seminomas

    Get PDF
    ABSTRACT: BACKGROUND: GOLPH2 (Golgi phosphoprotein 2) is a novel Golgi membrane protein. Despite its unknown physiologic function, however, it has been proposed as a biomarker for hepatocellular and prostate carcinoma due to its upregulation in those cancer entities. Whether the overexpression of GOLPH2 is tumour specific or a generic parameter of malignancy and whether this finding is true for additional carcinomas has not been determined. In this study, we aimed to evaluate the expression pattern of GOLPH2 in testicular seminomas, the most common histologic subtype of testicular neoplasm. METHODS: GOLPH2 protein expression was assessed by immunohistochemistry in 69 testicular seminomas and compared to the expression rates in matching normal testicular tissue and intratubular germ cell neoplasia of unclassified type (IGCNU). In addition, a subset of Leydig cell tumours was analyzed accordingly. RESULTS: GOLPH2 was consistently overexpressed (89.9%) in seminomas. Matching non-neoplastic tissue showed weak or negative staining. The observed differences between non-neoplastic and neoplastic tissue were statistically highly significant (p < 0.001). There were no significant associations with tumour status. Interestingly, GOLPH2 was also highly expressed in the intertubular Leydig cells as well as in Leydig cell tumours. CONCLUSIONS: GOLPH2 protein is highly expressed in seminomas and in Leydig cell tumours. This study fosters the association of GOLPH2 with malignant neoplastic processes. The staining pattern is easily assessable and consistent which is a favourable property especially in clinical settings. GOLPH2 could be a novel immunohistochemical marker for the assessment of testicular neoplasms, especially against the background that in analogy to hepatocellular carcinomas complementary GOLPH2 serum levels might be helpful in detecting metastases or recurrent tumour. Therefore serum studies and analyses of GOLPH2 expression in non-seminomatous germ cell tumours are strongly warranted

    The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis

    Get PDF
    BACKGROUND: The chemokine stromal derived factor-1 (SDF-1 or CXCL12) and its receptor CXCR4 have been demonstrated to be crucial for the homing of stem cells and prostate cancers to the marrow. While screening prostate cancers for CXCL12-responsive adhesion molecules, we identified CD164 (MGC-24) as a potential regulator of homing. CD164 is known to function as a receptor that regulates stem cell localization to the bone marrow. RESULTS: Using prostate cancer cell lines, it was demonstrated that CXCL12 induced both the expression of CD164 mRNA and protein. Functional studies demonstrated that blocking CD164 on prostate cancer cell lines reduced the ability of these cells to adhere to human bone marrow endothelial cells, and invade into extracellular matrices. Human tissue microarrays stained for CD164 demonstrated a positive correlation with prostate-specific antigen levels, while its expression was negatively correlated with the expression of androgen receptor. CONCLUSION: Our findings suggest that CD164 may participate in the localization of prostate cancer cells to the marrow and is further evidence that tumor metastasis and hematopoietic stem cell trafficking may involve similar processes

    Construction of tissue microarrays from prostate needle biopsy specimens

    Get PDF
    Needle biopsies are taken as standard diagnostic specimens for many cancers, but no technique exists for the high-throughput analysis of multiple individual immunohistochemical (IHC) markers using these samples. Here we present a simple and highly reliable technique for constructing tissue microarrays (TMAs) from prostatic needle biopsies. Serial sectioning of the TMAs, called β€˜Checkerboard TMAs', facilitated expression analysis of multiple proteins using IHC markers. In total, 100% of the analysed biopsies within the TMA both preserved their antigenicity and maintained their morphology. Checkerboard TMAs will allow the use of needle biopsies (i) alongside other tissue specimens (trans-urethral resection of prostates and prostatectomies in the case of prostate cancer) in clinical correlation studies when searching for new prognostic markers, and (ii) in a diagnostic context for assessing expression of multiple proteins in cancers from patients prior to treatment

    Quantitative real-time RT-PCR of CD24 mRNA in the detection of prostate cancer

    Get PDF
    BACKGROUND: Gene expression profiling has recently shown that the mRNA for CD24 is overexpressed in prostate carcinomas (Pca) compared to benign or normal prostate epithelial tissues. Immunohistochemical studies have reported the usefulness of anti-CD24 for detecting prostate cancer over the full range of prostate specimens encountered in surgical pathology, e.g. needle biopsies, transurethral resection of prostate chips, or prostatectomies. It is a small mucin-like cell surface protein and thus promises to become at least a standard adjunctive stain for atypical prostate biopsies. We tested the usefulness of real-time RT-PCR for specific and sensitive detection of CD24 transcripts as a supplementary measure for discriminating between malignant and benign lesions in prostatic tissues. METHODS: Total RNA was isolated from snap-frozen chips in 55 cases of benign prostatic hyperplasia (BPH) and from frozen sections in 59 prostatectomy cases. The latter contain at least 50% malignant epithelia. Relative quantification of CD24 transcripts was performed on the LightCycler instrument using hybridization probes for detection and porphobilinogen deaminase transcripts (PBGD) for normalization. RESULTS: Normalized CD24 transcript levels showed an average 2.69-fold increase in 59 Pca-cases (mean 0.21) when compared to 55 cases of BPH (mean 0.08). This difference was highly significant (p < 0.0001). The method has a moderate specificity (47.3%) but a high sensitivity (86.4%) if the cutoff is set at 0.0498. CD24 expression levels among Pca cases were not statistically associated with the tumor and lymph-node stage, the grading (WHO), the surgical margins, or the Gleason score. CONCLUSION: The present study demonstrates the feasibility of quantitative CD24 RNA transcript detection in prostatic tissues even without previous laser microdissection

    Differential CARM1 expression in prostate and colorectal cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coactivator-associated arginine methyltransferase 1 (CARM1) functions as a transcriptional coactivator of androgen receptor (AR)-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa) and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors.</p> <p>Methods</p> <p>Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA) promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1.</p> <p>Results</p> <p>The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65) but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-ΞΊB target gene transcription.</p> <p>Conclusions</p> <p>The results of this study suggest that, in addition to its role in activation of steroid receptors, CARM1 functions as a transcriptional modulator by altering the activity of many transcriptional factors, especially with regard to androgen independent PCa and colorectal cancers.</p

    Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer

    Get PDF
    In a strategy aimed at identifying novel markers of human prostate cancer, we performed expression analysis using microarrays of clones randomly selected from a cDNA library prepared from the LNCaP prostate cancer cell line. Comparisons of expression profiles in primary human prostate cancer, adjacent normal prostate tissue, and a selection of other (nonprostate) normal human tissues, led to the identification of a set of clones that were judged as the best candidate markers of normal and/or malignant prostate tissue. DNA sequencing of the selected clones revealed that they included 10 genes that had previously been established as prostate markers: NKX3.1, KLK2, KLK3 (PSA), FOLH1 (PSMA), STEAP2, PSGR, PRAC, RDH11, Prostein and FASN. Following analysis of the expression patterns of all selected and sequenced genes through interrogation of SAGE databases, a further three genes from our clone set, HOXB13, SPON2 and NCAM2, emerged as additional candidate markers of human prostate cancer. Quantitative RT–PCR demonstrated the specificity of expression of HOXB13 in prostate tissue and revealed its ubiquitous expression in a series of 37 primary prostate cancers and 20 normal prostates. These results demonstrate the utility of this expression-microarray approach in hunting for new markers of individual human cancer types

    Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells <it>in vivo</it>.</p> <p>Methods</p> <p>We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed <it>in vitro </it>and <it>in vivo </it>tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference.</p> <p>Results</p> <p>Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts <it>in vivo</it>. However, Pim1 expression enhanced the <it>in vitro </it>and <it>in vivo </it>tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes.</p> <p>Conclusion</p> <p>Our results suggest an <it>in vivo </it>role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the cell line. Pim1 promotes tumorigenicity at least in part by enhancing c-MYC transcriptional activity. We also made the novel discovery that treatment of cells with the c-MYC inhibitor 10058-F4 leads to a reduction in Pim1 protein levels.</p

    Expression analysis of secreted and cell surface genes of five transformed human cell lines and derivative xenograft tumors

    Get PDF
    BACKGROUND: Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. RESULTS: Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. CONCLUSION: Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries
    • …
    corecore